Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract The first infall of the LMC into the Milky Way (MW) represents a large and recent disruption to the MW circumgalactic medium (CGM). In this work, we use idealized, hydrodynamical simulations of an MW-like CGM embedded in a dark matter halo with an infalling LMC-like satellite initialized with its own CGM to understand how the encounter is shaping the global physical and kinematic properties of the MW CGM. First, we find that the LMC drives order-unity enhancements in MW CGM density, temperature, and pressure due to a shock from the supersonic CGM–CGM collision. The resulting shock front extends from the LMC to beyond ∼R200,MW, amplifying column densities, X-ray brightness, thermal Sunyaev–Zeldovich distortion, and potentially synchrotron emission from cosmic rays over large angular scales across the southern hemisphere. Second, the MW’s reflex motion relative to its outer halo induces a dipole in CGM radial velocities, withvR ± 30–50 km s−1atR > 50 kpc in the northern and southern hemispheres, respectively, consistent with measurements in the stellar halo. Finally, ram pressure strips most of the LMC’s CGM, leaving ∼108−9M⊙warm ionized gas along the past orbit of the LMC, moving at high radial and/or tangential velocities ∼50–100 kpc from the MW. Massive satellites like the LMC leave their mark on the CGM structure of their host galaxies, and signatures of such interactions may be observable in key all-sky tracers of the MW CGM and those of other massive galaxies.more » « lessFree, publicly-accessible full text available April 16, 2026
-
Abstract We study the effects of active galactic nuclei (AGN) feedback on the Lyαforest 1D flux power spectrum (P1D). Using theSimbacosmological-hydrodynamic simulations, we examine the impact that adding different AGN feedback modes has on the predicted P1D. We find that, forSimba, the impact of AGN feedback is most dramatic at lower redshifts (z < 1) and that AGN jet feedback plays the most significant role in altering the P1D. The effects of AGN feedback can be seen across a large range of wavenumbers (1.5 × 10−3 < k < 10−1s km−1) changing the ionization state of hydrogen in the IGM through heating. AGN feedback can also alter the thermal evolution of the IGM and thermally broaden individual Lyαabsorbers. For theSimbamodel, these effects become observable atz ≲ 1.0. At higher redshifts (z > 2.0), AGN feedback has a 2% effect on the P1D fork < 5 × 10−2s km−1and an 8% effect fork > 5 × 10−2s km−1. We show that the small-scale effect is reduced when normalizing the simulation to the observed mean flux. On large scales, the effect of AGN feedback appears via a change in the IGM temperature and is thus unlikely to bias cosmological parameters. The strong AGN jets in theSimbasimulation can reproduce thez > 2 Lyαforest. We stress that analyses comparing different AGN feedback models to future higher precision data will be necessary to determine the full extent of this effect.more » « lessFree, publicly-accessible full text available February 5, 2026
-
Context.Feedback from stars in the form of radiation, stellar winds, and supernovae is crucial to regulating the star formation activity of galaxies. Dwarf galaxies are especially susceptible to these processes, making them an ideal test bed for studying the effects of stellar feedback in detail. Recent numerical models have aimed to resolve the interstellar medium (ISM) in dwarf galaxies with a very high resolution of several solar masses. However, when it comes to modeling the radiative feedback from stars, many models opt for simplified approaches instead of explicitly solving radiative transfer (RT) because of the computational complexity involved. Aims.We introduce the Realistic ISM modeling in Galaxy Evolution and Lifecycles (RIGEL) model, a novel framework to self-consistently model the effects of stellar feedback in the multiphase ISM of dwarf galaxies with explicit RT on a star-by-star basis. Methods.The RIGEL model integrates detailed implementations of feedback from individual massive stars into the state-of-the-art radiation-hydrodynamics code,AREPO-RT. It forms individual massive stars from the resolved multiphase ISM by sampling the initial mass function and tracks their evolution individually. The lifetimes, photon production rates, mass-loss rates, and wind velocities of these stars are determined by their initial masses and metallicities based on a library that incorporates a variety of stellar models. The RT equations are solved explicitly in seven spectral bins accounting for the infrared to He IIionizing bands, using a moment-base scheme with the M1 closure relation. The thermochemistry model tracks the nonequilibrium H, He chemistry as well as the equilibrium abundance of C I, C II, O I, O II, and CO in the irradiated ISM to capture the thermodynamics of all ISM phases, from cold molecular gas to hot ionized gas. Results.We evaluated the performance of the RIGEL model using 1 M⊙resolution simulations of isolated dwarf galaxies. We found that the star formation rate (SFR) and interstellar radiation field (ISRF) show strong positive correlations with the metallicity of the galaxy. Photoionization and photoheating can reduce the SFR by an order of magnitude by removing the available cold, dense gas fuel for star formation. The presence of ISRF also significantly changes the thermal structure of the ISM. Radiative feedback occurs immediately after the birth of massive stars and rapidly disperses the molecular clouds within 1 Myr. As a consequence, radiative feedback reduces the age spread of star clusters to less than 2 Myr, prohibits the formation of massive star clusters, and shapes the cluster initial mass function to a steep power-law form with a slope of ∼ − 2. The mass-loading factor (measured atz = 1 kpc) of the fiducial galaxy has a median ofηM ∼ 50, while turning off radiative feedback reduces this factor by an order of magnitude. Conclusions.We demonstrate that RIGEL effectively captures the nonlinear coupling of early radiative feedback and supernova feedback in the multiphase ISM of dwarf galaxies. This novel framework enables the utilization of a comprehensive stellar feedback and ISM model in cosmological simulations of dwarf galaxies and various galactic environments spanning a wide dynamic range in both space and time.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M⊙, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M⊙) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M⊙. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars.more » « lessFree, publicly-accessible full text available February 4, 2026
-
Abstract The Aeosproject introduces a series of high-resolution cosmological simulations that model star-by-star chemical enrichment and galaxy formation in the early Universe, achieving 1 pc resolution. These simulations capture the complexities of galaxy evolution within the first ~300 Myr by modeling individual stars and their feedback processes. By incorporating chemical yields from individual stars, Aeosgenerates galaxies with diverse stellar chemical abundances, linking them to hierarchical galaxy formation and early nucleosynthetic events. These simulations underscore the importance of chemical abundance patterns in ancient stars as vital probes of early nucleosynthesis, star formation histories, and galaxy formation. We examine the metallicity floors of various elements resulting from Population III enrichment, providing best-fit values for eight different metals (e.g., [O/H] = −4.0) to guide simulations without Population III models. Additionally, we identify galaxies that begin star formation with Population II after external enrichment and investigate the frequency of carbon-enhanced metal-poor stars at varying metallicities. The Aeossimulations offer detailed insights into the relationship between star formation, feedback, and chemical enrichment. Future work will extend these simulations to later epochs to interpret the diverse stellar populations of the Milky Way and its satellites.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract The presence of dense, neutral hydrogen clouds in the hot, diffuse intragroup and intracluster (IC) medium is an important clue to the physical processes controlling the survival of cold gas and sheds light on cosmological baryon flows in massive halos. Advances in numerical modeling and observational surveys mean that theory and observational comparisons are now possible. In this paper, we use the high-resolution TNG50 cosmological simulation to study the Hidistribution in seven halos with masses similar to the Fornax galaxy cluster. Adopting observational sensitivities similar to the MeerKAT Fornax Survey (MFS), an ongoing Hisurvey that will probe to column densities of 1018cm−2, we find that Fornax-like TNG50 halos have an extended distribution of neutral hydrogen clouds. Within 1Rvir, we predict the MFS will observe a total Hicovering fraction of ∼12% (mean value) for 10 kpc pixels and 6% for 2 kpc pixels. If we restrict this to gas more than 10 half-mass radii from galaxies, the mean values only decrease mildly, to 10% (4%) for 10 (2) kpc pixels (albeit with significant halo-to-halo spread). Although there are large amounts of Hioutside of galaxies, the gas seems to be associated with satellites, judging both by the visual inspection of projections and by comparison of the line of sight velocities of galaxies and IC Hi.more » « less
-
Abstract Turbulent radiative mixing layers play an important role in many astrophysical contexts where cool (≲104K) clouds interact with hot flows (e.g., galactic winds, high-velocity clouds, infalling satellites in halos and clusters). The fate of these clouds (as well as many of their observable properties) is dictated by the competition between turbulence and radiative cooling; however, turbulence in these multiphase flows remains poorly understood. We have investigated the emergent turbulence arising in the interaction between clouds and supersonic winds in hydrodynamicenzo-esimulations. In order to obtain robust results, we employed multiple metrics to characterize the turbulent velocity,vturb. We find four primary results when cooling is sufficient for cloud survival. First,vturbmanifests clear temperature dependence. Initially,vturbroughly matches the scaling of sound speed on temperature. In gas hotter than the temperature where cooling peaks, this dependence weakens with time untilvturbis constant. Second, the relative velocity between the cloud and wind initially drives rapid growth ofvturb. As it drops (from entrainment),vturbstarts to decay before it stabilizes at roughly half its maximum. At late times, cooling flows appear to support turbulence. Third, the magnitude ofvturbscales with the ratio between the hot phase sound-crossing time and the minimum cooling time. Finally, we find tentative evidence for a length scale associated with resolving turbulence. Underresolving this scale may cause violent shattering and affect the cloud’s large-scale morphological properties.more » « less
-
Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over , gas surface density Σgas∼ 5–150M⊙pc−2, and stellar surface density Σstar∼ 1–50M⊙pc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5M⊙kpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight . For given Σgasand Σstar, we find . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as , while the combined turbulent and magnetic feedback yield shows weaker dependence . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved.more » « less
An official website of the United States government
